Yet another attack on whitebox AES implementation

Patrick Derbez ¹, Pierre-Alain Fouque¹, Baptiste Lambin¹, Brice Minaud²

¹Univ Rennes, CNRS, IRISA

²Royal Holloway University of London

- Introduction
- 2 The Baek, Cheon and Hong proposal

Oedicated Attack

4 Generic attack

Introduction

2 The Baek, Cheon and Hong proposa

Openion Dedicated Attack

Generic attack

Black box vs. White box

Black box model

Black box vs. White box

Black box model

White box model

White box implementation

Attacker:

- extracting key information from the implementation
- computing decryption scheme from encryption scheme

Designer:

provide sound and secure implementation

Main application:

- Digital Rights Management
- Fast (post-quantum ©) public-key encryption scheme

Two main design strategies

Table lookup

- First proposal by Chow et al. in 2002: broken
- Xiao and Lai in 2009: broken
- Karroumi et al. in 2011: broken
- Baek et al. in 2016: our target
- WhiteBlock from Fouque et al.: secure (but weird model)

ASASA-like designs

- SASAS construction: broken in 2001 by Biryukov et al.
- ASASA proposals (Biryukov et al., 2014): broken
- Recent proposals at ToSC'17 by Biryukov et al. to use more layers, leading to SA...SAS

CEJO Framework

- Derived from Chow et al. first white-box candidate constructions.
- Block cipher decomposed into R round functions.
- Round functions obfuscated using encodings.
- Obfuscated round functions implemented and evaluated using several tables (of reasonable size)

$$\cdots \circ \underbrace{f^{(r+1)^{-1}} \circ E^{(r)} \circ f^{(r)}}_{\text{table}} \circ \underbrace{f^{(r)^{-1}} \circ E^{(r-1)} \circ f^{(r-1)}}_{\text{table}} \circ \cdots$$

Increase security with external encodings

Baek et al.'s toolbox

- Proposed by Baek, Cheon and Hong in 2016.
- Toolbox dedicated to SPN under CEJO framework
 - Generic method to recover non-linear part of encodings
 - Generic algorithm to recover the linear component of encodings

Finding non-linear part not higher than recovering linear part

- New AES white-box construction
 - Based on CEJO framework
 - Parallel AES
 - Resisting their toolbox (110 bits of security)
 - Our target

- Introduction
- 2 The Baek, Cheon and Hong proposal
- Openicated Attack
- 4 Generic attack

The Baek, Cheon and Hong proposal

Round function of AES : $AES^{(r)} = MC \circ SR \circ SB \circ ARK$

Sparse input encoding

$$A(x) = \begin{pmatrix} A_{0,0} & A_{0,1} & & & \\ & A_{1,1} & A_{1,2} & & \\ & & \ddots & \ddots & \\ A_{31,0} & & & A_{31,31} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{31} \end{pmatrix} \oplus \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{31} \end{pmatrix}$$

$$M = A^{-1} \circ MC \circ SR$$

- Split M in columns blocks of size 8 s.t. $M = (M_0 | \dots | M_{31})$
- $M.x = \bigoplus_{i=0}^{31} M_i.x_i$
- **16-bit to 256-bit mappings:** $F_i = M_i \circ S \circ \bigoplus_{(k_i \oplus a_i)} \circ (A_{i,i}, A_{i,i+1})$
- Round function:

$$F^{(r)}(x_0,\ldots,x_{31})=\bigoplus_{i=0}^{31}F_i(x_i,x_{i+1})$$

Complexity

Time complexity

- R AES rounds: 32R table lookups + 31R xor of 256-bits words.
- For R = 10: 320 table lookups + 310 xor of 256-bit words.

Very fast

Memory requirement

- R AES rounds: 32R 16-bit to 256-bit mappings.
- For R = 10: 320 16-bit to 256-bit mappings

Issue

16-bit to 256-bit mappings:
$$F_i = M_i \circ S \circ \bigoplus_{(k_i \oplus a_i)} \circ (A_{i,i}, A_{i,i+1})$$

Remark

$$F_i(x,0) = M_i \circ S \circ \bigoplus_{(k_i \oplus a_i)} \circ A_{i,i}(x)$$
 is a 8-bit to 256-bit mapping.

Composing with right projection ⇒ affine equivalent to AES Sbox.

Issue

16-bit to 256-bit mappings: $F_i = M_i \circ S \circ \bigoplus_{(k_i \oplus a_i)} \circ (A_{i,i}, A_{i,i+1})$

Remark

 $F_i(x,0) = M_i \circ S \circ \bigoplus_{(k_i \oplus a_i)} \circ A_{i,i}(x)$ is a 8-bit to 256-bit mapping.

Composing with right projection ⇒ affine equivalent to AES Sbox.

Possible to recover affine mappings in $\mathcal{O}\left(2^{25}\right)$ using the affine equivalence algorithm from Biryukov *et al.*.

Affine Equivalence Algorithm

In 2003, Biryukov, De Cannière, Braeken and Preneel proposed an algorithm to solve the following problem:

Given two bijections S_1 and S_2 on n bits, find affine mappings \mathcal{A} and \mathcal{B} such that $S_2 = \mathcal{B} \circ S_1 \circ \mathcal{A}$, if they exist.

- Ascertain whether such mappings exist
- Enumerate all solutions
- Time complexity in $\mathcal{O}(n^3 2^{2n})$

Affine Equivalence Algorithm

In 2003, Biryukov, De Cannière, Braeken and Preneel proposed an algorithm to solve the following problem:

Given two bijections S_1 and S_2 on n bits, find affine mappings \mathcal{A} and \mathcal{B} such that $S_2 = \mathcal{B} \circ S_1 \circ \mathcal{A}$, if they exist.

- Ascertain whether such mappings exist
- Enumerate all solutions
- Time complexity in $\mathcal{O}(n^3 2^{2n})$
- Time complexity for linear version in $\mathcal{O}\left(n^32^n\right)$

Baek et al. Proposal

To avoid this weakness, take 32 random 8-bit to 256-bit mappings h_i . The 16-bit to 256-bit tables are defined as

$$T_i(x,y) = F_i(x,y) \oplus h_i(x) \oplus h_{i+1}(y)$$

And we can evaluate the encoded round function with

$$\bigoplus_{i=0}^{31} T_i(x_i, x_{i+1}) = \bigoplus_{i=0}^{31} F_i(x_i, x_{i+1}) = F^{(r)}(x_0, \dots, x_{31})$$

Security claim: 110-bit

- Introduction
- 2 The Baek, Cheon and Hong proposa
- 3 Dedicated Attack
- 4 Generic attack

Overview of the attack

From encoded round functions $F \simeq M \circ S \circ A$ with $A \simeq \begin{pmatrix} * & * & * \\ * & \ddots & * \\ * & & \ddots & * \end{pmatrix}$

- Reduce the problem to block diagonal encodings : $\Rightarrow \widetilde{F} = M \circ S \circ B$ with B block diagonal.
- Compute candidates for each block:
 - **1** Using a projection, $P \circ M \circ S \circ B_i$ is affine equivalent to S.
 - **②** Use the affine equivalence algorithm from [BCBP03] to get some candidates for B_i .
- Identify the correct blocks:
 Use a MITM technique to filter the wrong candidates

Reducing the problem to block diagonal encodings

Decompose A in $A = B \circ \widetilde{A}$ with:

- B block diagonal affine mapping built from B_i's (unknown)
- \widetilde{A} with same structure as A, built from blocks $(0_8 \text{ ld}_8) \circ E_i^{-1}$ (known)

Reducing the problem to block diagonal encodings

Decompose A in $A = B \circ \widetilde{A}$ with:

- B block diagonal affine mapping built from B_i's (unknown)
- \widetilde{A} with same structure as A, built from blocks $(0_8 \text{ ld}_8) \circ E_i^{-1}$ (known)

For all $0 \le i \le 31$:

- compute Ker L_i with $L_i = (A_{i,i} A_{i,i+1})$ (8 × 16 matrix)
- 2 get a basis (e_1, \ldots, e_8) of Ker L_i
- **3** complete this basis $\Rightarrow E_i = (e_1 \dots e_{16})$
- \blacksquare \exists B_i 8x8 invertible matrix s.t. $L_i = B_i \circ (0_8 \text{ Id}_8) \circ E_i^{-1}$

For any $(a,b) \in \mathbb{F}_2^8 \times \mathbb{F}_2^8$:

For any $(a,b) \in \mathbb{F}_2^8 \times \mathbb{F}_2^8$:

$$T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y)$$

$$= f_{i}[A_{i,i}(a \oplus \mathbf{x}) \oplus A_{i,i+1}(b \oplus y) \oplus c_{i}] \oplus h_{i}(a \oplus x) \oplus h_{i+1}(b \oplus y)$$

$$\oplus f_{i}[A_{i,i}(a) \oplus A_{i,i+1}(b \oplus y) \oplus c_{i}] \oplus h_{i}(a) \oplus h_{i+1}(b \oplus y)$$

For any $(a,b) \in \mathbb{F}_2^8 \times \mathbb{F}_2^8$:

- ② $y \in \text{Ker } A_{i,i+1} \Rightarrow x \mapsto T_i(a \oplus x, b \oplus y) \oplus T_i(a \oplus x, y)$ is constant

$$T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y)$$

$$= f_{i}[A_{i,i}(a \oplus \mathbf{x}) \oplus A_{i,i+1}(b \oplus y) \oplus c_{i}] \oplus h_{i}(a \oplus x) \oplus \underline{h_{i+1}(b \oplus y)}$$

$$\oplus f_{i}[A_{i,i}(a) \oplus A_{i,i+1}(b \oplus y) \oplus c_{i}] \oplus h_{i}(a) \oplus \underline{h_{i+1}(b \oplus y)}$$

For any $(a,b) \in \mathbb{F}_2^8 \times \mathbb{F}_2^8$:

$$T_i(a \oplus x, b \oplus y) \oplus T_i(a, b \oplus y)$$

$$=f_{i}\left[A_{i,i}(a\oplus \mathbf{x})\oplus A_{i,i+1}(b\oplus y)\oplus c_{i}\right]\oplus h_{i}(a\oplus x)\oplus \underline{h_{i+1}(b\oplus y)}$$

$$\oplus f_i[A_{i,i}(a) \oplus A_{i,i+1}(b \oplus y) \oplus c_i] \oplus h_i(a) \oplus \underline{h_{i+1}(b \oplus y)}$$

$$=f_i\left[A_{i,i}(a)\oplus A_{i,i+1}(b\oplus y)\oplus c_i\right]\oplus h_i(a\oplus x)$$

$$\oplus f_i[A_{i,i}(a) \oplus A_{i,i+1}(b \oplus y) \oplus c_i] \oplus h_i(a)$$

For any $(a,b) \in \mathbb{F}_2^8 \times \mathbb{F}_2^8$:

$$T_i(a \oplus x, b \oplus y) \oplus T_i(a, b \oplus y)$$

- $=f_{i}\left[A_{i,i}(a\oplus \mathbf{x})\oplus A_{i,i+1}(b\oplus y)\oplus c_{i}\right]\oplus h_{i}(a\oplus x)\oplus \underline{h_{i+1}(b\oplus y)}$
 - $\oplus f_i[A_{i,i}(a) \oplus A_{i,i+1}(b \oplus y) \oplus c_i] \oplus h_i(a) \oplus \underline{h_{i+1}(b \oplus y)}$
- $= \underline{f_i [A_{i,i}(a) \oplus A_{i,i+1}(b \oplus y) \oplus c_i]} \oplus h_i(a \oplus x)$
 - $\oplus \underline{f_i[A_{i,i}(a) \oplus A_{i,i+1}(b \oplus y) \oplus c_i]} \oplus h_i(a)$

For any $(a,b) \in \mathbb{F}_2^8 \times \mathbb{F}_2^8$:

$$T_{i}(a \oplus x, b \oplus y) \oplus T_{i}(a, b \oplus y)$$

$$= f_{i}[A_{i,i}(a \oplus \mathbf{x}) \oplus A_{i,i+1}(b \oplus y) \oplus c_{i}] \oplus h_{i}(a \oplus x) \oplus \underline{h_{i+1}(b \oplus y)}$$

$$\oplus f_{i}[A_{i,i}(a) \oplus A_{i,i+1}(b \oplus y) \oplus c_{i}] \oplus h_{i}(a) \oplus \underline{h_{i+1}(b \oplus y)}$$

$$= \underline{f_{i}[A_{i,i}(a) \oplus A_{i,i+1}(b \oplus y) \oplus c_{i}]} \oplus h_{i}(a \oplus x)$$

$$\oplus f_{i}[A_{i,i}(a) \oplus A_{i,i+1}(b \oplus y) \oplus c_{i}] \oplus h_{i}(a)$$

Computing candidates for each block B_i

We decomposed A into $B \circ \widetilde{A}$ where B is a block diagonal affine mapping. Hence

$$\sum_{j=0}^{31} T_j \circ \widetilde{A}^{-1}(0,\ldots,x_i,\ldots,0)$$

is a 8-bit to 256-bit mapping of the form $M_i \circ S \circ B_i$.

- **①** Compute a projection P_i such that $P_i \circ M_i \circ S \circ B_i$ is a bijection over \mathbb{F}_2^8 .
- ② Use Biryukov *et al.* affine equivalence algorithm to recover all possible candidates for B_i ($\approx 2^{11}$ candidates for AES Sbox).

$$(A^{(r+1)})^{-1}$$
 \circ MC \circ $\begin{vmatrix} S \\ \vdots \\ S \end{vmatrix}$ \circ $A^{(r)}$

$$\widetilde{A}^{-1} \circ \begin{pmatrix} B_0^{-1} \\ B_1^{-1} \\ B_2^{-1} \end{pmatrix} \circ MC \circ \begin{bmatrix} S \\ \vdots \\ S \end{bmatrix} \circ A^{(r)}$$

$$\widetilde{A}^{-1} \circ \begin{pmatrix} B_0^{-1} \\ B_1^{-1} \\ B_2^{-1} \end{pmatrix} \circ MC \circ \begin{bmatrix} S \\ \vdots \\ S \end{bmatrix} \circ \begin{pmatrix} C_0 \\ C_5 \\ C_{10} \\ C_{15} \end{pmatrix} \circ \widehat{A}$$

$$\widetilde{A}^{-1} \circ \begin{pmatrix} B_0^{-1} \\ B_2^{-1} \\ B_3^{-1} \end{pmatrix} \circ MC \circ \begin{bmatrix} S \\ \vdots \\ S \end{bmatrix} \circ \begin{pmatrix} C_0 \\ C_{5} \\ C_{10} \\ C_{15} \end{pmatrix} \circ \widehat{A}$$

$$\xrightarrow{\Delta y_0} \xrightarrow{B_0 \cdot \Delta y_1} \xrightarrow{\Delta z_0} \xrightarrow{\Delta z_1} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_3} 0$$

$$\xrightarrow{\Delta y_0} \xrightarrow{B_0 \cdot \Delta y_0} \xrightarrow{A z_0} \xrightarrow{\Delta z_0} \xrightarrow{\Delta z_1} \xrightarrow{\Delta z_0} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} 0$$

 $\sum T_i$

$$\widetilde{A}^{-1} \circ \begin{pmatrix} B_0^{-1} \\ B_1^{-1} \\ B_2^{-1} \end{pmatrix} \circ MC \circ \begin{bmatrix} S \\ \vdots \\ S \end{bmatrix} \circ \begin{pmatrix} C_0 \\ C_{5} \\ C_{10} \\ C_{15} \end{pmatrix} \circ \widehat{A}$$

$$\xrightarrow{\Delta y_0} \xrightarrow{\Delta y_1} \xrightarrow{\Delta z_0} \xrightarrow{\Delta z_1} \xrightarrow{\Delta z_1} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_3} \xrightarrow{\Delta z_1} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_3} \xrightarrow{\Delta z_1} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_3} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_3} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_3} \xrightarrow{\Delta z_3} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_3} \xrightarrow{\Delta z_3} \xrightarrow{\Delta z_3} \xrightarrow{\Delta z_3} \xrightarrow{\Delta z_4} \xrightarrow{\Delta z_5} \xrightarrow{$$

$$\widetilde{A}^{-1} \circ \begin{pmatrix} B_0^{-1} \\ B_1^{-1} \\ B_2^{-1} \end{pmatrix} \circ MC \circ \begin{bmatrix} S \\ \vdots \\ S \end{bmatrix} \circ \begin{pmatrix} C_0 \\ C_5 \\ C_{10} \\ C_{15} \end{pmatrix} \circ \widehat{A}$$

$$\xrightarrow{\Delta y_0} \xrightarrow{\Delta y_1} \xrightarrow{\Delta y_1} \xrightarrow{\Delta z_1} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_3} 0$$

$$\xrightarrow{\Delta y_0} \xrightarrow{A \downarrow y_2} \xrightarrow{A \downarrow y_1} \xrightarrow{A \downarrow y_1} \xrightarrow{\Delta z_1} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_3} 0$$

$$\xrightarrow{\Delta y_0} \xrightarrow{\Delta y_1} \xrightarrow{\Delta y_2} \xrightarrow{\Delta z_1} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_2} \xrightarrow{\Delta z_3} 0$$

Knowledge of each B_i and $C_i \Rightarrow$ extract the key

Implementation (Intel Core i7-6600U CPU @ 2.60GHz):

- $\bullet \sim$ 2000 C++ code lines
- Decomposition $A = B \circ \widetilde{A} : < 1s$
- Get candidates for each $B_i, C_i : \sim 10s \quad (64 \times \mathcal{O}(2^{25}))$
- Recovering the correct B_i and C_i : < 1s
- Recovering the externals encodings : < 1s

Total time : $\sim 12s$

Theorical time complexity : $\mathcal{O}(2^{31})$

Negligible memory

Implementation (Intel Core i7-6600U CPU @ 2.60GHz):

- $\bullet \sim$ 2000 C++ code lines
- Decomposition $A = B \circ \widetilde{A} : < 1s$
- Get candidates for each $B_i, C_i : \sim 10s \quad (64 \times \mathcal{O}(2^{25}))$
- Recovering the correct B_i and C_i : < 1s
- ullet Recovering the externals encodings : < 1 s

Total time : $\sim 12s$

Theorical time complexity : $\mathcal{O}(2^{31})$

Negligible memory

Fixing the construction for 60-bit security would require $n=2^{13}$ parallel AES, leading to an implementation of size $\sim 2^{12}TB$

- Introduction
- 2 The Baek, Cheon and Hong proposa
- 3 Dedicated Attack
- 4 Generic attack

Generic Problem

Problem

Let *F* be an *n*-bit to *n*-bit permutation such that $F = \mathcal{B} \circ S \circ \mathcal{A}$, where:

- **1** \mathcal{A} and \mathcal{B} are *n*-bit affine layers;
- ② $S = (S_1, ..., S_k)$ consists of the parallel application of k permutations S_i on m bits each (called S-boxes). Note that n = km.

Knowing S, and given oracle access to F (but not F^{-1}), find affine \mathcal{A}' , \mathcal{B}' such that $F = \mathcal{B}' \circ S \circ \mathcal{A}'$.

Solving this problem

 \Longrightarrow

Breaking white-box implementations (of SPN) following the CEJO framework

Remarks

- Remark 1: F^{-1} can be built from F in 2^n operations
- Remark 2: a priori the problem has many solutions
- **Remark 3:** When S is composed of a single S-box, this is precisely the affine equivalence problem tackled by Biryukov *et al.* (with the caveat that F^{-1} is not accessible)

Overview of the algorithm

- Similar to our dedicated attack (but generic)
- 2-step algorithm:
 - Isolate the input and output subspaces of each Sbox
 - ② Apply the generic affine equivalence algorithm by Biryukov et al. to each Sbox separately

Finding input subspace of each S-box

Goal

Build a subspace of dimension m of the input space, such that this subspace spans all 2^m possible values at the input of a single fixed Sbox, and yields a constant value at the input of all other Sboxes.

Idea:

- **1** Recover k subspaces of dimension n-m, each yielding a zero difference at the input of a distinct S-box
- ② Pick any k-1 of these spaces and compute their intersection
- **3** Result is a subspace of dimension m that yields a zero difference at the input of k-1 Sboxes, and spans all values at the input of the remaining Sbox.

Finding input subspace of each S-box

New goal

Build a subspace of dimension n-m of the input space that yields a zero difference at the input of one Sbox.

- Pick uniformly at random an input difference Δ
- ② With probability 2^{-m} , Δ yields a zero difference at the input of a particular Sbox.
- **②** Check that the set of output differences generated by input difference Δ spans a subspace of dimension n-m.
- **Q** Repeat this process few times to find n-m independent difference Δ .

Recovering affine layers

• From previous step, we know A' such that:

$$F \circ \mathcal{A}'^{-1} = \left(\begin{array}{c|c} \cdots & B_i \\ \hline \end{array} \right) \circ \left[\begin{array}{c} S \\ \vdots \\ S \end{array} \right] \circ \left(\begin{array}{c} \cdots \\ D_i \\ \hline \end{array} \right)$$

Recovering affine layers

• From previous step, we know A' such that:

$$F \circ \mathcal{A}^{l-1} = \left(\begin{array}{c|c} \cdots & B_i \\ \hline \end{array} \right) \circ \begin{bmatrix} S \\ \vdots \\ S \end{bmatrix} \circ \begin{pmatrix} \cdots & D_i \\ \hline \end{array} \right)$$

② Compose with projections and run affine equivalence algorithm to recover D_i 's

Recovering affine layers

• From previous step, we know \mathcal{A}' such that:

$$F \circ \mathcal{A}'^{-1} \circ \begin{pmatrix} \ddots & & & \\ & D_i^{-1} & & \\ & & \ddots \end{pmatrix} \circ \begin{bmatrix} S^{-1} \\ \vdots \\ S^{-1} \end{bmatrix} = \begin{pmatrix} \cdots & B_i & \cdots \end{pmatrix}$$

- Compose with projections and run affine equivalence algorithm to recover Di's
- Retrieve B_i's

Complexities

Complexity of solving the problem:

- Biryukov et al.: $\mathcal{O}(n^3 2^{2n})$
- Baek et al.: $\mathcal{O}(2^n + n^4 2^{3m}/m)$
- Our (identical Sboxes): $\mathcal{O}\left(2^m n^3 + 2^m l n^3 + \frac{n^4}{m} + 2^{2m} m^2 n\right)$
- Our (different Sboxes): $\mathcal{O}\left(2^m n^3 + 2^m l n^3 + \frac{n^4}{m} + 2^{2m} m n^2\right)$

Application to Baek et al. proposal:

- ullet generic attack: $\mathcal{O}\left(2^{35}\right)$ (allows to decrypt but do not recover the key)
- dedicated attack: $\mathcal{O}\left(2^{31}\right)$ (recover the key)

Thank you for your attention!

1-round attack

From $M \circ (S, ..., S) \circ B \circ \widetilde{A}$, give an equivalent representation $\widetilde{M} \circ (S, ..., S) \circ \widetilde{B} \circ \widetilde{A}$

$$\begin{pmatrix}
\dots & \middle| \widetilde{M}_{i} \middle| \dots & \middle\rangle & \circ & \left[\begin{matrix} S \\ \vdots \\ S \end{matrix} \right] & \circ & \left(\begin{matrix} \ddots & & \\ & \widetilde{B}_{i} & & \\ & \ddots & & \\ \end{matrix} \right) & \circ & \widetilde{A}$$

$$\Delta z \qquad \stackrel{\Delta z = \widetilde{M}_{i} \cdot \Delta y_{i}}{\longrightarrow} & \stackrel{\vdots}{0} & S \circ \widetilde{B}_{i} & \stackrel{\vdots}{0} & \\ & \ddots & & \ddots & \\ & \vdots & & \ddots & \\ & \ddots & & \ddots & \\ & \vdots & \vdots & \ddots & \\ & \vdots &$$

Get the external encodings from the key

Suppose that we know the key Remains externals encodings :

$$M_{out} \circ (AES, AES) \circ M_{in}$$

Get the external encodings from the key

Suppose that we know the key and $A^{(1)}$ Remains externals encodings:

$$M_{out} \circ (AES, AES) \circ A^{(1)} \circ \widetilde{M}_{in}$$

 \widetilde{M}_{in} is known, built as $\widetilde{M}_{in} = (A^{(1)})^{-1} \circ M_{in} \Rightarrow$ extract M_{in}

Use 256+1 values of y to recover M_{out}